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by
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Abstract

9tochastic integrals of random functions with respect to a white noise

random measure are defined in terms of random series of usual Wiener integrals.

Conditions for the existence of such integrals are obtained in terms of the

nuclearity of certain operators on L-spaces. The relation with the Fisk-

Stratonovich symmetric integral is also discussed.
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1. Introduction

Before introducing and discussing our results, let us introduce some notation

and definitions which are used throughout the paper. (T,A,m) denotes an atomless

*separable a-finite measure space and (P,F,P) a probability space.

W = {W(A): A c A 0  is a white noise random measure on A 0 
= tA A: m(A) <

with control measure m, i.e. W is a mean-zero Gaussian stochastic process in-

dexed by sets from A0 and with covariance function EW(A)W(B) = m(AnB).

"= {(t): t E T} is a measurable real valued stochastic process such that

,'. fEj (t) 12m (dt) < m

T

,Let {( be a CONS in (real) L2(T) and

n

a = a (w) = f (t,w)O (t)m(dt).
n' n T n

Clearly

= (w)n(t) in L 2(T S).
n nl

n

• ," A stochastic integral fT *dW is defined by

N
(1.1) f *dW = lim Y an f¢,n(t)dW(t),

T N-X n=l T

provided the limit exists in L 2(2) and does not depend on the choice of a

CONS , }.
n

This is a very attractive definition of a stochastic integral that does not

a require any special kind of measurability of and the parameter set can be

arbitrary.

-° . I.
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.1.1

A stochastic integral of this type has been defined and studied by Balkan

I], Kuo and Rusek [6] and Ogawa [8], independently. Ogawa [8] has proven that

L -convergence in (1.1) with respect to the trigonometric basis {CPn} implies

* ., similar convergence to the same limit with respect to Haar basis. Balkan [1]

and Kuo and Rusek [6] studied the case when (t), t E T is a Wiener L 2-functional

of W, i.e. for every t E T, (t) is F = o{W(A): A E A }-measurable. Kuo and

Rusek [6] (cf. also [7]) using Hida's white noise analysis studied sufficient

conditions for the convergence in (1.1) and proved that under certain assump-

tions f *dW can be evaluated utilizing the Fisk-Stratonovich procedure.

Our approach is based on some classical results from the theory of nuclear

operators on Hilbert spaces and on the Ito-Wiener expansion of L 2-Wiener func-

tionals. In Section 2, we establish characterization of integral operators with

a summable tne, which is basic for this paper. In Section 3, we study special

cases of integrands. We show that if is a Gaussian process subordinate to W,

then JA*dW is a quadratic form in independent standard normal r.v.'s as it was

studied by Varberg [10]. A necessary and sufficient condition for the existence

of fA*dW when C lies in the p-th homogeneous chaos is given in Theorem 3.3. A

general sufficient condition for the integrability of F is given in Theorem 4.1.

In Section 5, we investigate the relationship between fl§*dW and the Fisk-

Stratonovich integral. Theorem 5.8 provides sufficient condition for the exist-

ence and equality of both integrals. This condition, which is given in terms

of appropriate Sobolev-space norms, is of the same nature as the one presented

in [6], but differs in the value of a coefficient ((p + 1)! instead of p! in

[6]). Theorem 5.9 gives a quite simple condition which guarantees the evalua-

tion of fl*dW as a limit of corresponding Stilties sums.

Throughout this paper the following notations are used:

% ., . . . , . -,. . I .. - . *-• # . . - - , - - . .• , .

• " -' " .' ' . .' '. ', . .- . . ." . - " " , . " . '- '" " ' , "" . -". . • . "" -' 
- '
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1.2

2k 2k k k
L (Tk ) := L (Tk, * A e in.),

where A. = A, m. = ;" J J

I (g) = f... f g(s 1 ,..., sp)dW(s)...dW(s )
P T TP

p-L imes

is the p-tuple Ito-4iener integral of g E L (TP); when (T,m) is the unit interval

with Lebesgue measure, then dW is replaced by dB, where B(t), t E [0,1] is a stand-

ard Brownian motion; j0o(t)dB(t) is the usual It0 integral of a nonanticipating

process ,(t), t E [0,11; f'o(t)odB(t) denotes the Fisk-Stratonovich integral

(cf. [4], p. 101).

.101
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2. Integral operators with a summable trace

Let H be a real separable Hilbert space, and k: T 2 H be a measurable

2mapping such that f 2 IIk(st)! dm(s)dm(t) < -. Define an operator
~T

2 2T
K:L (T)- L (T;H) by

(2.1) (K4)(t) = f(s)k(s,t)dm(s), E L2 (T).
T

We say that K has a sunwable trace if for every CONS {n } c L 2(T) the

series

(2.2) f tn(s)k(s,t) n(t)dm(s)dm(t)
n T2

converges in H.

Let k be the symmetrization of k, i.e.

-1
Sk(s,t) = 2 {k(s,t) + k(t,s)}, s,t E T,

and let K:L 2(T) - L 2(T;H) be the corresponding integral operator with kernel k.

Note that K has a summable trace if and only if K possesses this property and

the limit in (2.2) is the same if k is replared by k.

Proposition 2. 1. ccer K given by .9 has a swwable trace if and

*n i• o -h H !<x Kh :L2 T
.or h, - : L 2 )T) defined b ,

(Kh )(t) J (s'st),h>dm(sj (

- , , , .,. . . . . , - . . . . , . .. - ., . . .. .



2.2

Proof. Let {n }I be a CONS in L 2(T) and put hn = T 2 n(s)k(s,t)$n(t)dm(s)dm(t).

Assume that K has a summable trace. Since any permutation of { } is also a

CONS in L2 (T), E h converges unconditionally in H. Hence for every h E H

(2.3) 11<kh,In>' = Yl<h nh>I < o.
n n

Since K b is also a selfadjoint operator, Kh is nuclear (cf. e.g. [2], Theorem

3.4.3).

Conversely, assume Kh is a nuclear operator for every h E H. Thus

E n l<khn'$n> ' < - for every CONS f$n} in L 2(T), and by (2.3) Enhn converges

weakly unconditionally in H. Since H is weakly complete, E h convergesSn n

strongly in H; cf. e.g. [3], 11.5.

Corollary 2.2. If K has a sumable trace, then h Trace(Kh) ie a line-r

functional on H satisfying the equaZity

<h0,h>= Trace (Kb), h E H,

/ 2ohere h0 is the limit of the series (2.2) for some (any) CONS {pn } in L (T).

hience the trace of K, denoted by trk and given by the series

"- ' trk := f p (s)k(s,t)o (t)dm(s)dm(t)
n nn T2

2is well-defined, i.e. does not depend on the choice of a CONS {$n} in L (T).
n

.......................... ........... '....." .a. . . . . .



3. Integration in some special cases

A. Integrals of subordinate Gaussian processes.

Let

" (3.1) (t) =ff(st)dW(s) = 1i(f(.,t)), t T,
T

where f belongs to L 2(T 2). Let {¢n } be a CONS in L 2(T) and consider the ortho-

normal expansion of f in L 2(T 2):

f:. f(s,t) f 0 fm~(S) n(t),

m,n

and the i.i.d. standard normal r.v.'s Xn -Tn(s)dW(s).

" Proposition 3.1. Let be given by (3.1). Then fT4 *dW exists and

f m*dW X X n a.s.
T m,n

provided the operator F:L (T) L (T) defined by

2(F)(t) = f¢(s)f(s,t)dm(s), E L (T),

T

has a summable trace.

Note that in this case f"*dW coincides with the double stochastic integral
* . A_of f defined by Varberg [10], which is different from the double Ito-Wiener

integral 12 (f).

Proof. Since 2 f = trf (cf. Corollary 2.2), the series Z f convergesn nn n nn

unconditionally. Therefore Z f X X converges unconditionally in L2(Q)
m,n nin m n

(cf. [10]), and

• "..

i~i: 2 - : : ;;;-2- :? i-.. .. ... .ij -:. . . .. : -. --.. ".. .. " , . ... . " -. . .. -.. - . . -. -.. .



3.2

N O
f XX = lir f X)X
in n nnmm,n N_ o n=l m=I n

N
= lim Y (ff(t)n (t)dm(t))X

N- n=l T

= f (t)*dW(t).
T

12
Example 3.2. fB*dB = B 2(1)/2.

0
Proof. Indeed, B(t) = IOiD(s,t)dB(s), where D = {(s,t): 0 5 s - t < 11,

and F= 2-1 is nuclear as a one-dimensional projection, where

F is the symmetrization of F. Also

f + f = 2<F4 mn> =< 1  ><lmn nLM <i n0i 'm>< [0]n >
n

Therefore, by Proposition 3.1

1 -
JB*dB = 2 lim Y (f + f )x X
0 N-O m,ni<N

2 1lim( I <i >X) =2 B(I).
N- ° n1l [0,1'n

A

B. Integrals of multiple Ito-Wiener integrals.

Let

(3.2) t(t) f f(sI ... , s pt)dW(s)-.. dW(s p ) = I (f(',t)),
ppP

s ,) blogs o 2  p+l
t T, where f f(sl,..., Spt) belongs to L (Tp ) and is symmetric in

s . s for each fixed t. We have for every t TS. .. p



3.3

,I l(t)l2l = p!Ilf(-,t)1 22SL" ( )L 2 (Tp+ I)

and

=p!11fII 2 l
L (Tx()L + I

Since for a.e. (s,t) c T2 , f(o,s,t) E L2 (TP-1), the mapping

2 2 2 -F:L (T) L (T;L 2(TP-)) given by

, L2

(3.3) (F )(t) = fr(s)f( °,s,t)dm(s), E L (T),
T

is a well-defined linear continuous operator. trf will stand for the trace of

F, provided F has a summable trace (cf. Corollary 2.2). Note that in this case

trf is an element of L (TP 1)

Theorem 3.3. Let be given by (3.2). Then fT *dW exists if and only if

the operator F defined by (3.3) has a sunmable trace. In this case

f/*dW i+i(f) + pIp(trf).
T

Proof. We have

a = f (t) (t)dm(t)
T

= f(f f(s1 ,..., s pt)dW(s 1 . . . ndW (s p ) ) n (t ) dm ( t)
T Tp

=I (gn),p n

where gn (s,. .. , s) - ff(sl, .. s, s,t)n(t)dm(t), and the interchange of the
p Tip n



*3.4

A

multiple Ito-Wiener and usual integration can be easily verified for simple

functions and extended to the general case by the usual approximation argument.

By Ito's recurrence formula (cf. [5], Thm. 2.2) we get

(3.4) an f ndW = I p(gn)I(n)
,T n

Sp+l(gn 0n + PIp-l(hn),

where (gn n n)(ti ... tp+l) = g n(t 1.... tp) n(t+l) =

<f(t I .... It ,'), n(')>pn(tp+) and

h n '( ...Is ) f 2 n (sfs1,... s P-'S't)4n(t)dm(s)dm(t).

T

We observe now that Z g an converges to f in L 2(T p+ ) and consequently

ZI (g a converges to I (f) in L2 (Q). Therefore, in view of (3.4),
n p+lgn n p+l

fA*dW exists if and only if Z h converges in L2 (Tp - ) for every
nn

CONS ( }c L 2(T), which means that F has a summable trace. Since Z h = trf,n 'n n

(3.4) completes the theorem. L]

Example 3.4.

1 11
fHn(B(t),t)*dB(t) = n Hn+l fH1  (B(t),t)dt,
0 0

where H (x,t) is the Hermite polynomial of degree n defined by
n

2 n 2n x t -x /2tH (x,t) r (-t) e -- e , t > 0.
n 3xn



3.5

Proof. Indeed, H (B(t),t) = I (f(',t)), where

f(ss..., Sn t) = 1ot(sl,..., s ) Therefore the symmetrization of f in

the last two variables is given by

14 if max{s I ..., Sn-l _ max{s,tl

1f ' . n-'S't) = 10 otherwise.

Let { n} be a CONS in L 2[0,1]. We have

n / n(S) f(Sl
, .... S n-lS, t) n (t) dsdt

n 00

11

= Y /fkn(S)f(sil, . . . ,I SnlSt) n(t)d
sdt

n 00

2-iY f11n (S)l[max{ssl ... I < max{s,t}] n (t)dsdt

n O0

= 2-i1 ff4 (s)(l - l[max{sl,..., SI } > s]l[max{sl,... , Sn}>t]) n(t)dsdt

n n-I

1' ' n-

= 2-i (< ,],n>2 - m .D>2)

-n= 2-i(i _max{sl, s. Snl)

2([,1n-1
in L ([0,1]n). Hence F has a summable trace and (trf)(s I ..., Sn I

2- (1 - maxsl, ... I Sn-i}) By Theorem 3.3 flHn(B(t),t)*dB(t) exists. To

evaluate this integral we observe that

)) = n + l-11nll01nl

In+l (f) = In+l (l[0'S n+l~ Sn (n + 1) 1 n+ (l[Olln+) I
-1

=(n + 1)H Bl,,

. . . . . .. . . . . . . . . .



3.6

and, since a multiple Ito-Wiener integral can be expressed by usual Ito

integral (cf. [5], Theorem 5.1),

nIn-1(trf) = 2- 1In.nl (1 - max{sl, ... , Sn-l)

-1 1 Sn- s2
= 2-n f0 f  .. "fO (1 - sn)dB(Sl)...dB(s 2 )dB(s n )

= 2-n(n - - sn-l)Hn_2(B(Snl), Sn-l)dB(Sn-1 )
0

= 1nf1 - s)dX(s),
0

where X(s) H=(B(s),s) (n - )f H n-2(B(u),u)dB(u). Integrating by parts

(note that sample paths of X are continuous) we get

11
f(1- s)dX(s) = (1 - s)X(s)lo +X(s)ds,
0 0

which yields n1 (trf) f2-1 nfX(s)ds, and completes the example.

Example 3.5. floB(l - t)*dB(t) does not exist.

Proof. Indeed, B(l - t) = lf(s,t)dB(s), where f is a symmetric function

-' defined on [0,112 by

1 if s +t .
f(s,t) =

0 otherwise.

By Theorem 3.3 and Proposition 2.1 it is sufficient to show that F = F is

not a nuclear operator on L2 [0,1], where

r.'
rii~



3.7

1 l-t

(Fp)(t) = ff(s,t)p(s)ds = f p(s)ds.
0 0

Consider the sequences { } and {4} of orthonormal functions in L2[0,]]

n(t) = v7i cos(2ffnt), n >- 1, t c [0,1],

and

n (t) = vr sin(2-nn(l - t)).

Then
I 1-t

Y<F(np > = 2y f( f cos(2nns)ds)sin27n(l - t)dt
n nO 0

21

which shows that F is not a nuclear operator.

A

p-

- -



2
4. Integration of general Wiener L -functionals

Throughout this section we shall assume that

2 W
FE L (T x Q,A o F ,m 0 P).

A
According to the well-known Ito-Wiener theorem which says that

L 2(2,FW,P) = Kp

p=O

where K is the p-th homogeneous chaos, we may decompose (t) into an ortho-
p

gonal series

CO
" ' (t)= (t),

p=o P

where p = { p(t): t E T} c Kp and 0 (t) = E (t). Since we can always choose

p as measurable processes belonging to L (T x Q) we also have

(4.1) 1 = C in L2(T x Q).

p=O

A
Moreover, each p p _ 1 can be represented by a multiple Ito-Wiener integral

(4.2) F, (t) = I (f (',t)), t c T
p p p

where f = fs ..... s ,t) ( L2 (TP+l) is symmetric in si, ... s for each

fixed t. We set f0 (t) = E (t) and as usual 10 (c) = c. Further f will denote

the symmetrization of f in the last two variables. For every p 1 1 we define

an operator

.7

7 1 . ."'

V *' j* .. .~



4.2

F L2(T) L2(T; L 2(T~ P1)

by

2
(F q 0(t) = fgs)f p(*,s,t)dm(s), PE L (T).

T

*By Proposition 2.1, F phas a suminable trace if and only if for every

h L 2 (T P 1) Fh :L2(T) - (T) is a nuclear operator, where

2
(Fph)Mt) = fp(s)<f p(-,s,t),h(.)>dm(s), CL (T).

T

We define

(4.3) OF 0=suip h j lhil 5 1, h E L(

where IjAIl denotes the nuclear norm of an operator A (cf. e.g. (21, p. 111).

Note that (4.3) always makes sense, whether or not F has a summable trace.
p

Clearly, if OF 0o < -, then F phas a suinnable trace. The converse is also true

and this simply follows by the Closed Graph Theorem applied to the linear

mapping h + F .Finally, trf will stand for the trace of F , provided
p,h p p

OF P < OD.

Theorem 4.1. Assume that

A 2 ({f p = 1f 0112 
2  + X (p + l)!llf p112 2  1~ + OF p0 2

L (T) p=l L (T )

is ftnite. Then f*dW exists,
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* 4.3

(4.4) fJ*dW I (fO) + [I (f) + pip(trf)]1 0 ~ p+1 p -T p=l p

in L2 (Q) and

Hflf*dWfl -< iA({f )).

T L(a)

Proof. We have

N O

(4.5) X fqndmf dw = S
n=l T T pO p,N'

where

N
* - S = fE*ndmfpdW

pN n=l T T

and the series E ,N converges in L for each N 1.

By Theorem 3.3 for every p > 1,

(4.6) S p,N I +l(f ) + pI 1(trfp) in () as N -o

and obviously S0N I (f ). Using (3.4) we have

(4.7) 5p,N I p+l (fp,N + PIp-l (kp,N),

N

where f (tI ... tpl) = < <f (t .... tp,')n () (t I )p,N n1 p ' p n n p+i

N. -- and kp(,N ' ' ... I  : I f n(S)7p(Sl, .... , s,,t) n(t)dm(s)dm(t).
and CsP-' ~. 1) n=l 2 n p P-'"n

Tn-- T

kaI.t °.
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4.4

Hence IlfpSN 11- ! fp 11 and

k 1 su{< ,h> : lh{il- 1, h E L2(TP-)kp,N p,N

< sup{IF p,h1 T :jh < , h E L2 (TP-I)} =F p0.

Therefore, for every r > q I and N - 1

I N SN 2  Y [Ip+l (f p,N ) + plp-l(k p
p=q PN p=q

r 2 r 2
< 2 f (p + 1)ll )JJ + 2 1 Pp!'IlkPii

Pq P 1  pNP p,N

p~q pP!~k N
r fp2

2 (p + 1)![IlIf p
p=q

which shows that IEr =qSpN 2 0 uniformly in N as q,r--. Combining this

(4.5) and (4.6) Theorem 4.1 follows. L

Proposition 4.2. if q 0 p where q < -, then A({f }) < - is also a
Prpsto .. i p=0 p ,  p

necessary condition for tho existence of ft*dW.

2 W
Proof. Let Q be the orthogonal projection of L (Q4FW,P) onto K Using

p P

(4.5) and (4.7) we get for each 0 < p < q

N
Qp(fT*dW) = limQ ( L T ndmfTndW)

T N- Pn=lT T

! o'• lira Q_(S N

N-to p=0
P  P,

lim[Ip (f ,N) + (p + 1)Ip (kp+l,NN-o f-p -,Npp+,
-. ...- ---.. .,. . . -. ..,. .. . .. .-. , .. .. . .-- . < ' ~ '; " ' ' < < . .' . .. - - .' . < ." .-. .- " ". . " • ..- <



4.5

= I (f ) + (1 + p) lim Ip(k
.- p -1 N-.. pl,

Therefore {k+,N= converges in for any orthonormal basis L 2 .
p+l,Nfl co n

This implies that Fp+ has a summable trace and IF p+ I < . j

We do not know whether or not A({f I) < - is necessary for the existenceP

of fA*dW in the general case. Nevertheless Theorem 4.1 gives a straightforward

way to establish the integrability of E. Clearly the basic difficulty is in

getting an upper bound for OF p 0. We now use certain Sobolev-space type con-

ditions on the f 's to upper bound OF p0.

Theorem 4.3. Let T = 10,1] and m be Lebesjue measure on T. For p 1 1

- anc o > 0 we define

2 I 112 + f u - (,l-2u) f (.,v)11 2
a (f L 2 (T 1 ) T2  p p L(T p)

Assume that for some a > ,

U 2 (ff 4) fo II 0 2 2 + (p + l)!U2 (f
}1 = L (1) p=l "a p

is finite. Then 4*dB exists, (4.4) holds and

1 Ilf *dB II 2 - CU ({ f),
0 L

where C depends only on a.

Proof. Since If I - If 1I and U2(f ) < o, the function
p p

[0,I] t + f (',t) E L2 ([O,I]P) has absolutely convergent Fourier series,- . p

i.e.

.- - - - - ..

".-"..i.-':.°, • .. v. -- . '.-';. : .-. " . :- .- '.,'.- .-. "..'..'.--.-.' ,':.'' ,-'..'-.'.-.-.' .'.-'...'... .,.'. .'... ... ... ". .-.... . . .. -'.. . .-.-.. . . ...- ".. . .i."
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.4%

"19 ,...,9 s pt) = c (sI ... s )e2fllft
" PnEZZ P"n p

in L2 ([O,lIP+I), where E L( ] < ; c.f. [9], proof of Theorem 2...... Z p,n O, ]p

Moreover

n ic p 1 - CU (fp ),

where C depends only on (x. Put Xn(t) = e2Tint.

Let h E L 2([O,11 p - l ) and let { n} and {4n be two sequences of orthonor-

mal functions in L 2[0,1]. We have

1 1

I 7 p j<p(*)< ,n(,s),h(') s)h&)2 2(s)dslfxn (t) p(t)dtI
j n p 0

1 1

< Y(7<c (',s),h(.)>l 2ds) 2

n 0 p,n

.'. -1 1chil <- CU (f ) I1hil.
n p,n

Hence IFp,h'lT _ CUc (fp )ItiI which yields DFp 0 CU (fp). Therefore

2. , 2 2
A (if }) - (C + l)U ({f }) and Theorem 4.1 completes the proof.

p A p

A sufficient condition for the integrability of , stronger than that of

Theorem 4.3, can be written in terms of the covariance functions of the compo-

nent processes { }.
p

Theorem 4.4. Let T = [0,11 and m be Lebesgue measure on T. If for some

. -. 1/2,

. 4

•, .-',., ,..-. ..-. -.-..-..-.-... .-, ..-,-... ......-.-..... ..... . .... . . . ... . . -
• ,- . :,-'. ; .,• " - , , ,"- , - -' ., , ': .'" ;' - .. . - q -' '.: , , -_. , ,,,, ' .', . 2 "hi-"." -- .-4,, '-.-:. -
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2 00 EI(u)- (v)I2
Na Y~ 2 +I f' ppl i dudvi01 (T) +p=1 P 1.2 (T< 2) T2 u - vl+2U

" inite, then fE*dB exists, (4.4) holds and

0

I f *dBI CN (E) ,
0

where C del-ens ',

Proof. Since

"2

1 2 + f (u) -P (v)12

2+P L L2 (T - T 2  u - v l+2 aL

T2 u 2-'A

p!{Ijf P12 P+l +f 2 Iu -v!~"~ p ,u !1 t ,) 2  duv
~L(T ) T L (T)

*- and

' <Fp,h ,tp>j 2- (I<Fp,h ,ti>j + I<Fp,h',SPD)

where F is defined similarly to F with f replaced by fp, the inequality
ph ph p p

A({f s) < Const N (F) follows by the same arguments as those used in the proof
ofp a

'-' of Theorem 4.3.

p,



5. Evaluation of the integral by the Fisk-Stratonovich procedure

Throughout this section (T,m) will be the unit interval with Lebesgue

measure.

*" Let (t), t * [0,11 be a stochastic process. We say that a (generalized)

Fisk-Stratonovich integral of exists if

n
(5.1) S 7T1 [2 ( j -i) + j(t j)][B(t. B(t -1

converges in probability as mesh (Tr) 0 0, where 7 runs over all finite parti-

tions 0 = t o < t1 <...< t = 1 (n E IN) of [0,1], and we write

1

fE(t)odB(t) = lir S

0 mesh11)-*0

Note that we do not require in this definition any kind of measurability of K.

In this section we shall study the relationship between f,*dB and fFodB.

Let r be given by (4.1) and (4.2). Put D {(s,t): 0 s<t!l1 and

D = {(s,t): 0- t< s5 1}. Define f+ (f, respectively) as the restriction of
p p

the function

2
[0,1] 9 (s,t) f (',s,t) C E '0 p

to D+ (D_, respectively).

Proposition 5.1. Let = FP q < , be a mean-square continuous sto-

".."zstio pro ess. Assu,e that for every 1 p - q the functions f+ and f are
p p

"".tyzuous ,znd rossess the extensions (aZ8so denoted by f+ and f respectiaei.y)
p

Ct ?onc..', 'us functions fro-: D (D_, respectively). into L2 ([0, p - )  The?-

fl' (t)odB(t) r.ts an:



5.2

:"' f (t)odB(t)= I (fO) + l [Ip (f ) + pI(g
1 , ~ p'= P+1 p

1 +
g (.) = 21 f[f(°,s,s) + f (.,s,s)]ds.
p 0 p p0P

Proof. Clearly we may assume that E=l , where 0--p-q. The case p- 0
p

is obvious. Let p>-l and let T= {tO ,..., t be a partition of [0,11. Using
n

A
Ito's recurrence formula we get

n 2-1 [C (tj) + p(tj)][B(t.) - B(tl)]
7T j p j-1 p j j-1

n
* 5.2) 1 ' ( 2 [f (-,t. + f (.It)1MI (1

7 j-1 p j 1 [t.tA
j=1 f )p3(g

Ip+l (f +p -i pgT

where

n
f () p 2 [f (,tj ) + f (,t )1[ (ti )

p -.- i p - t t.

J=-jj 1

and

.n t,
g =2- 1 fj [f-,s,t )+ f +(.,s,t.)Ids.

j=l tj_1

2 2 p-
Since the mapping [0,1] 2 : (s,t) -* f (.,s,t) E L ([OI p- I) is continuous

p2

and uniformly bounded on D+uD_, the mapping [0,11 ' -
. f (',t) , L2([O,11 p )

is continuous. Hence f f in L2 ([0,i]p+l) - mesh (TT) 0. By the
+ p, - p p-1

continuity of f and f on D and D-, respect vtely, gp,., g il ([O,]p p + -
as mesh ( ) O.

tz'.... ._A.. . . . . . .... . .......... " . .... ..
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Ptposition ).. tS , zj satisfies the assumptions of Proposition

.1": ,( t)*dB( ". 7hen

1 1

fT,(t)*dB(t) = f (t)o di±t).
0 0

PcJ We have f.'r a.e. (s,t) 7 [0,11

k 5.3)f (.,Sl) tfIS tst) + I -S tS t ]
p 2p p

2
and the function on the right-hand side of (5.3) is continuous in (s,t)E f0,1]

B%- Proposition 4.2 for every h E L2 ([Q0,11pl) Fp,h is a nuclear operator on

1L.[0,1]. Hence for every h E L 2 (0,1] p - )

<trf ,h> = Trace (F )
p p,h

1

= f 2-<f+(',s,s) + fp(',s,s),h(')>ds

0 p p

= <g h >
p

(cf. e.g. Theorem 3.4.4 [2]). Proposition 5.1 and Theorem 4.1 complete the

proof.

Example 5.3. In Example 3.4 we showed that flH (B(t),t)*dB(t) exists and

we evaluated .e integral. Since in this case the assumptions of Proposition 3.1

are satisfied, Proposition 5.2 provides an alternative way of evaluation of

foH (B(t),t)*dB(t). Using Proposition 5.2 and Theoreml.1, Chap. III in [41 weget
1 1
fH (B(t),t)*dB(t) = JHn(B(t),t)odB(t)
0 n0n

JHi (B(tl),t)dB(t) + 2 fd<H(B(s,s),B(s),
0n 0

1 (B() ,l) + fHn 1 (B(s),s)ds.
0

----------"---' -" ---...-'-.-r.- .....-. ..- ... • ,, -. "
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Remark 5.4. The assumptions of Proposition 5.1 do not guarantee the

exisLence of f:*dB. Indeed, it is well-known that there exists a continuous

symmetric kernel k:[O,1] -I IR such that the corresponding integral operator

is not nuclear (cf. e.g. [2], p. 124). Put (t) = fk(s,t)dB(s). Then tht

assumptions of Proposition 5.1 are satisfied, but by Theorem 3.3 f>*dB does

not exist.

Below are given simple examples of Gaussian processes for which the

Fisk-Stratonovich integral exists while the series expansion (1.1) fails to

converge.

Example 5.5. fOB(l-t)odB(t) = B (1)+ 2f4 B(l-t)dB(t), but

1

JoB(l- t)*dB(t) does not exist (cf. Example 3.5).

Proof. Indeed, it is easy to check that

0~12
S21 (B(l-t_ ) + B(l-t.)][B(t.)-B(t ) B B2 () + fB(l-t)dB(t),

j=l j- 2 1
2

and

n -
21[B(l- tj l)+B(l-tj)][B(t )-B(t j1)] f JB(l-t)dB(t)

jjj +1 1

2

in L2 (0) as mesh(T) 0, where T = {t o ,..., t} is a partition of [0,11 and

0 = maxi]: t < --.j 2

Example 5.6. Let (.(t), tE [0,11 be a non-anticipating stochastic process

given by

I if 0 2-£K(t) = i I

B(t- ) if t 1
2 2

.( .4. . . . . .
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Then f% (t).dB(t) =f'B(t - ')dB(t) while f '*dB does not exist.
0 12 ' 0

Proof. Indeed, it is elementary to check that

n 2Y ( Mt ) ~. )(B(t. -B(t. ) 0 in L ()as mesh(er) 0, which
j= j J-1 J-

implies that the Fisk-Stratonovich integral exists and is equal to the Ordinary

A

Ito integral of ~

On the other hand &(t) =flf(s,t)dB(s), where f(s,t)=lI if 0-5s!5- and
01

s + -!< t 1 and =0 otherwise. Hence f is given by

-if 0 s< and s +-1<t -7
2 22

Y(s,t) ifl !<if 1 and 15t -

0otherwise

2Consider the sequences n~ and n~ of orthonormal vectors in L [0,I] given

by

n(t) =cos 4Trnt , 0 !5t I

and

(sin 4'.rn(t+-)i 0 2 <

1o otherwise

Then

F1 ;(s)ds)Y (t)dt
n +2

n
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which completes the example.

Intuitively speaking, the existence of the Fisk-Stratonovich integral re-

quires some kind of continuity of the process while conditions for fl0*dB

are of a different nature. Hence it is also easy to give an example of a pro-

cess C for which, conversely, fE*dB exists but f~odB does not exist.

Example 5.7. Let A be a dense Borel subset of [0,1] such that

Z' O< m(A) < 1. Put t (t) = 1(t), f(s,t) = P(s) (t) and (t) = flf(s,t)dB(s) =

(f0PdB)y(t). Clearly F(= F@ = <i p>O is nuclear, while S = 0 if

TT = {to,..., t I c [0,1]\A and S = (1ldB)B(1) if r c A, where S is defined[.n 0t 7t

by (5.1). Therefore fodB does not exist.

Proposition 5.2 shows the equality of both integrals fodB and f *dB

under certain additional assumptions. This is an open question if the exist-

ence of both integrals suffices for their equality.

Examples 5.5 and 5.6 indicate that the existence of the series expansion

(1.1) is a quite strong property of the process ;. Below are given certain

Sobolev-space type conditions, similar to those proposed by Kuo and Rusek [6],

which imply the existence and equality of both integrals, f odB and fC*dB.

Since the proof in [61 seems to contain some gaps and the final condition differs from

ours in the value of a coefficient (p! instead of (p+l)!), we present a com-

*'-[ plete proof of this result. Moreover our proof does not use the theory of

Sobolev spaces, which makes it more elementary.

In what follows below

+

f (sI... ,St) = f (sl,..p-lSpAt,SpVt)
p p p lo.' - sp AtSp t

and

fp(S 1 9 .... ,s ,t) = f (s .. ,s s Vt,s At).
S.. p 1 '' ' "

ii . . - i. • - - . . '..- - .> . .- " ; -.--.- - . ' . - -. .4 . ,
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Theorem 5.8. Let , be given by (4.2) and (4.2), where f is continuous.
0

Assume that for some a > ,
2'

0,

2 0f11 2 2-f + 2+
M (If .) ,'2 + I (P+1)![U (f) + U (f+ ) ]a . L (T) p=l a

is finite, where U2 () is defined in Theorem 1.3. Then both integrais f'lodB

and flE*dB exist, they are equal a.s. and (4.4) holds. Moreover,

0 a

where C depends only on a.

Proof. Since f + f+ =2f and f 1 +f+ 1 f we get

pt p p pp- pp 1 p.... [j 2(f) < la2+ [U2(fp) +U (f )]. In view of Theorem 4.3 f$*dB exists. Using

the same argument as in the proof of Theorem 4.3 we have

(5.4) f (-,t) = ( c - )x (t)
p Pn n

nE TL

in L([OI p ) where xn(t) =exp(i2Trnt) and E Icpnl _ cu (f). A

n n p'n L2 (T p )

similar expansion we have for f with c replaced by c in (5.4).
p p,n p,n

Let 7T = {t t be a partition of [0,1]. We have

2
S~ = S p i,7T2ip),

p=O pr

where S is defined by (5.1) with replaced by p. Using (5.2) and (5.4)
p ,Tp*

we get

- vv
% .

Z&~
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s 1 (f )+pI (g)
p,. p+l p,71 p-i P,iT

where

k 1
f+t c- (* 7 2- 1 pI (t .. )x (t i+p . (,t)x (t)1(t

flEZ j=1 T XD T JD 3- j t 1,.

+ k-

= P, 11 () 7T (-,t) + ()i (-,t),

and

g1  (s1 .= 2-1 ~ c- (s1 ~ . p(s

+ 21 fc+ (s s s)+ W

nE7Z 0 p '1 
,T

Here y (t) x x(t.i and X (t) =X (t.) if t E (t t ,j=1.. k.
'n,7Tn j1 n , T n j j-1'tj

Since 1 and 1 T 1 we obtain

II I2 p+1 I (IICp nil 2 ) + )~+nI2CUtf+ ( f)
P7L (T )n pL 2 (T l L (Tp) p C[pf +U()

and by Schwartz inequality

(1 ) 2-1 1 H V (*,s)x (sdsl 2 -

nc72 T n~rr L (T~1

+ 2-1 1 I fc+ (,gs)x + (s)dsll2 -
flE7 ZZTP' T L 2(T )

<2 (p 11 2 p + Ic 112 p
n ZL (T )L (T)

-7 . . . . . . . *
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-1 +
G2 [U(f )+ U(f)]

There fore

r r r2

2 22

2 (P, + l)![Ilfp,4 + 2 2,4

3C 2 (p +l)![Ul (f +) + U 2(f )] 0
p=q cc p a p

as p,q - ,uniformly in all finite partitions Tr of [0,1].

To complete the proof it is enough to show that for each p 1

S P, * I P (f ) +p1 -(trf p) in L 2(Q) as mesh (70) - 0. To this end we shall

show that H1f P,- f p1 -0 and Ijg -" trf H -0 as mesh (TO) -0.

Using (5.4) we have

f~~ ~ 1I21 X1c pn(4n T- p 1, Xn)II2 H
I fp71 P L(TP+l n pn ,T T~ D L (TP)

+ Ik~~ -l 1 +n) -0
nE2Z p,n n1flT TP- x X ) L 2(T P+l

as mesh () 0 by the Dominated Convergence Theorem.

Since

-l 1 +
trf =trf 2 trf + 2 trf

p p p p

+
and both f and f are symmetric in the last two variables we obtain

p p

trt- = fX( f(ts9t)X (t)dsdt
n Z T

1
= Y' fc- (-,s)x (s)ds,

nf ZZ 0 p,n n

-. . . . .. . . . .- -A . 7 1
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where a denotes the complex conjugate to a. A similar expression we obtain

for trf
p

Finally

Ig -trfp 2 P <- 2-1 life- (,'s)(X (s) - Xn(s))dslT
PT PL z(T ) nE2 0 pqn n, TTn 1 L 2 (T p-)

+ 21 C iic ,'s)(Xn (s) - X (s))dst 2

Ic112f2nE 2Z 0 L p -

c 1 IlL2 -lx xll
n 2 ,n L (Tp) LT(T)

+ +- 0 [ + ] r~ln

nE 2Z P nl L 2 T p n (T

as mesh (7) - 0 by the Dominated Convergence Theorem. The proof of Theorem

5.8 is complete. ]

It occurs that a simple condition N (E) < oo for some a > given in
a 2

Theorem 4.4 implies not only the existence of f[*dB but also the integrability

of in the Stieltjes sense.

Theorem 5.9. Assume that for some a N < , where N ( -) is de-

fined in Theorem 4.4. Then for every partition r = {to,..., tk} of [0,1]

and any choice t* E (tltj], j - 1,..., k,

k
".o£ ~~T S*= (t ) [B(t )-B(t 1]
27, " j=1 J-

convcr:Tes to flo*dB as mesh(t) 0.

Proof. By (4.8), t - f (',t) has absolutely convergent Fourier series,
p

I.e. f can be presented in the form similar to (5.4). Starting from this

representation and following essentially all the steps in the proof of

Theorem 5.8 we complete the proof of Theorem 5.9. 1

%2 %
r..
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